Li Ge

My general interests include novel symmetry-inspired paradigms and strong interactions in non-Hermitian photonics and open nonlinear systems, such as lasers, cavity-QED, nonequilibrium condensate, and optomechanics.

Positions

Full Professor, Physics and Astronomy, College of Staten Island and the Graduate Center (Manhattan)

Education

PhD in Physics, Yale University, 2010

BS in Physics, Peking University, 2004

Publications

Book Chapters, Focus Issues and Journal Covers

1. “Nonlinear and Novel Phenomena in Non-Hermitian Photonics,” Li Ge and W. Wan, in Emerging Frontiers in Nonlinear Science (Springer, 2020).

2. “Deformed wavelength-scale microdisk lasers with quantum dot emitters,” Q. Song, Li Ge, et al., in Quantum Optics with Semiconductor Nanostructures (Woodhead Publishing, 2012).

3. Special Topics on Non-Hermitian Photonics, edited by L. Feng, M. Lu, L. Ge, and H. Schomerus, Appl. Phys. Lett. (2023). 

4. Focus issue on Optical Microcavities, edited by Li Ge, L. Feng, and H. Schwefel, Photonic Research (2017). 

5. Cover illustration in Nature Nanotechnology, Vol. 19, Iss. 9, showing a room-temperature topological edge state of polariton condensate in perovskite (2024).

6. Cover illustration in eLight, Vol. 4 Iss. 26, showing on-chip generated entangled photon qudits (2024).

7. Cover illustration in Phys. Rev. Lett., Vol. 130 Iss. 26, showing a two-dimensional laser array with a non-Hermitian gauge field (2023).

8. Cover illustration in Photonic Research, Vol. 6 Iss. 4, showing polynomial temporal evolution in a non-Hermitian flat band (2018). 

9. Cover illustration in Photonic Research, Vol. 5 Iss. 6, showing scattering states and eigenmodes in an optical microcavity (2017).

10. Cover illustration in Nonlinearity, Vol. 22 Iss. 1, showing coherent light generated from a random laser (2009).

In Preparation and Preprints

111. “Modern semiclassical laser theory with applications to micro and nanolasers,” H. E. Tureci, A. D. Stone, and Li Ge, solicited by Rev. Mod. Phys.

110. “High-Dimensional Quantum Key Distribution by a Spin-Orbit Microlaser,” Y. Zhang et al., submitted to Nature Phys. (2024).

109. “Weyl exceptional points with zero and nonzero topological charges,” L. Ge and C. Fleming, submitted to Phys. Rev. Lett. (2024).

108. “Linear optical analogy of of the fermionic Kitaev chain and Majorana bound states, ” L. Ge, J. Rivero, and L. Feng, submitted to Phys. Rev. Lett. (2024).

107. “Pseudo-Hermitian Transition in Degenerate Nonlinear Four-Wave Mixing,” Li Ge and W. Wan, arXiv:1603.05624 (2016). 

106. “Pattern Formation and Strong Nonlinear Interactions in Exciton-Polariton Condensates,” Li Ge, A. Nersisyan, B. Oztop, and H. E. Tureci, arXiv:1311.4847 (2014). 

Published Journal Articles

105. “Non-Hermitian Hybrid Silicon Photonic Switching,” X. Feng et al., Nature Photonics (2025). [Advanced Online Publication]

104. “Non-Hermitian gauged reciprocity and symmetry,” J. Lyu, Z. Gao, L. Feng, and L. Ge*, Phys. Rev. B 110, 134102 (2024).

103. “Probing non-Hermitian zero modes in a nanophotonic trimer: From nonuniform to twisted coupling,” M. Hedir, K. Ji, J. Levenson, R. El-Ganainy, L. Ge, and A. Yacomotti, Phys. Rev. A 110, 043515 (2024).

102. “Storing light near an exceptional point,” Y. Zhu, J. Hou, Q. Geng, B. Xue, Y. Chen, X. Chen, L. Ge*, and W. Wan*, Nature Commun. 15, 8101 (2024).

101. “Enhanced Frequency Conversion in Parity-Time Symmetric Line,” J. Hou, J. Ma, B. Xue, Y. Zhu, J. Lin, X. Jiang, Y. Zheng, X. Chen, Y. Cheng, L. Ge*, and W. Wan*, Phys. Rev. Lett. 132, 256902 (2024). 

100. “Topological Valley Hall Polariton Condensation,” K. Peng, W. Li, M. Sun, J. D. H. Rivero, C. Ti, X. Han, L. Ge, L. Yang, X. Zhang, and W. Bao, Nature Nano. 19, 1283 (2024). [Cover illustration]

99. “Integrated Preparation and Manipulation of Flying Photon Qudits,” H. Zhao, Y. Zhang, Z. Gao, J. Yim, S. Wu, N. M. Litchinitser, L. Ge, and L. Feng, eLight 4, 10 (2024). 

98. “Subwavelength Photorefractive Grating in a Thin-Film Lithium Niobate Microcavity,” J. Hou, J. Zhu, R. Ma, B. Xue, Y. Zhu, J. Lin, X. Jiang, Y. Zheng, X. Chen, Y. Cheng, L. Ge*, Y. Zheng*, and W. Wan*, Laser Photon. Rev., 202301351 (2024).

97. “Non-Hermitian systems with a real spectrum and selective skin effect,” L. Ge, Innov. Discov. 1, 4 (2024).

96. “Effective size of a parity-time symmetric dimer,” L. Ge, Phys. Rev. A 109, 023513 (2024).

95. “Robust zero modes in non-Hermitian systems without global symmetries,” J. Rivero, C. Fleming, B. Qi, L. Feng, and L. Ge*, Phys. Rev. Lett. 131, 223801 (2023).

94. “Tracking exceptional points above the lasing threshold,” K. Ji, Q. Zhong, L. Ge, G. Beaudoin, I. Sagnes, F. Raineri, R. El-Ganainy, and A. Yacomotti, Nature Commun. 14, 8304 (2023).

93. “Linear localization of zero modes in weakly coupled non-Hermitian reservoirs,” B. Qi and Li Ge*, Adv. Phys. Res. 2023, 202300066 (2023).

92. “Non-Hermitian gauged laser arrays with localized excitations: Anomalous threshold and generalized principle of selective pumping,” L. Ge*, Z. Gao, and L. Feng, Phys. Rev. B 108, 104111 (2023).

91. “Two-dimensional reconfigurable gauged laser array,” Z. Gao, X. Qiao, M. Pan, S. Wu, J. Yim, K. Chen, B. Midya, L. Ge, and L. Feng, Phys. Rev. Lett. 130, 263801 (2023). [Editor’s Choice; Cover illustration]

90. “Analysis of Dirac exceptional points and their isospectral Hermitian counterparts,” J. Rivero, L. Feng, and Li Ge*, Phys. Rev. B 107, 104106 (2023). 

89. “Imaginary gauge transformation in momentum space and Dirac exceptional point,” J. Rivero, L. Feng, and Li Ge*, Phys. Rev. Lett. 129, 243901 (2022). 

88. “Spin–orbit microlaser emitting in a four-dimensional Hilbert space,” Z. Zhang, H. Zhao, S. Wu, T. Wu, X. Qiao, Z. Gao, R. Agarwal, S. Longhi, N. M. Litchinitser, L. Ge, and L. Feng, Nature 612, 246 (2022). (Nature Link)

87. “Self-Induced Transparency in a Perfectly Absorbing Chiral Second-Harmonic Generator,” J. Hou et al., PhotoniX 3, 22 (2022).

86. “Exceptional Points with Memory in a Microcavity Brillouin Laser,” Y. Chen, L. Ge*, W. Wan*, et al., Optica 9, 971 (July 2022).

85. “Vortex radiation from a single emitter in a chiral plasmonic nanocavity,” X. Y. Wang et al., Nanophotonics 11, 1905 (2022). 

84. “Direct observation of zero modes in a non-Hermitian optical nanocavity array,” F. Hentinger et al., Photonics Research 10, 02000574 (2022). 

83. “Direct Observation of Chaos Assisted Tunneling in Silicon Microdisks,” S. Wang, Li Ge*, Q. Song*, et al., Light Sci. Appl. 10, 135 (2021).

82. “Green’s function as a defect state in a boundary value problem,” J. Rivero and Li Ge, Phys. Rev. B 103, 195342 (2021). 

81. “Non-Hermiticity generated active photonic resonances with a unique quantization condition,” J. Rivero, M. Pan, K. G. Makris, L. Feng*, and Li Ge*, Phys. Rev. Lett. 126, 163901 (2021).

80. “Extraordinary fast forward and backward light in transparent non-Hermitian systems,” L. Zhang, L. Ying, Li Ge*, W. Zhao, W Zhang*, Laser Photon. Rev. 2021, 2000204 (2021).

79. “Chiral symmetry in non-Hermitian systems: product rule and Clifford algebra,” J. Rivero and Li Ge, Phys. Rev. B 103, 014111 (2021).

78. “Pseudo-chirality: a manifestation of Noether’s theorem in non-Hermitian systems,” J. Rivero and L. Ge, Phys. Rev. Lett. 125, 083902 (2020).

77. “Twisted light on a chip,” L. Ge, Science 368, 707 (2020).

76. “Origin of robust exceptional points: a restricted bulk zero mode,” J. Rivero and L. Ge, Phys. Rev. A 101, 063823 (2020).

75. “Revealing the missing dimension at an exceptional point,” X. Y. Wang, L. Ge*, J. Zhu*, R. M. Ma*, et al., Nature Phys. 16, 571–578 (2020).

74. “Ultrafast control of vortex microlasers,” C. Huang, L. Ge*, Y. Kivshar*,  and Q. Song*, et al., Science 367, 1018 (2020).

73. “Synthetic PT and anti-PT symmetry in a single microcavity,” F. Zhang, Y. Feng, L. Ge*, and W. Wan*, Phys. Rev. Lett. 124, 053901 (2020).

72. (Invited review) “Parity-Time Symmetry Synthetic Lasers: Physics and Devices,” B. Qi, H. Chen, Li Ge*, P. Berini*, R. Ma*, Adv. Opt. Mat. 7, 1900694 (2019).

71. “Time-reversal invariant scaling of light propagation in one-dimensional non-Hermitian systems,” J. Rivero and Li Ge, Phys. Rev. A 100, 023819 (2019).

70. “All-optical control of lead halide perovskite microlasers,” N. Zhang, Y. Fan, K. Wang, Z. Gu, Y. Wang, Li Ge*, Q. Song*, and S. Xiao*, Nat. Commun. 10, 1770 (2019).

69. (Invited perspective) “Quantum chaos in optical microcavities: A broadband application,” Li Ge, EPL 123, 64001 (2018).

68. “Transporting optical chirality through the dynamical barriers in optical microcavities,” S. Liu, J. Wiersig, W. Sun, Y. Fan, Li Ge, J. Yang, H. Cao, S. Xiao, and Q. Song, Laser Photon. Rev. 12, 1870045 (2018).

67. “Defect states emerging from a non-Hermitian flat band of photonic zero modes,” B. Qi, L. Zhang, and Li Ge*, Phys. Rev. Lett. 120, 093901 (2018).

66. “Non-Hermitian lattices with a flat band and polynomial power increase [Invited],” Li Ge, Photonics Research 6, A10-A17 (2018).

65. “Stable Switching among High-Order Modes in Polariton Condensates,” Y. Sun, Y. Yoon, S. Khan, Li Ge, M. Steger, L. N. Pfeiffer, K. West, H. E. Tureci, D. W. Snoke, and K. A. Nelson, Phys. Rev. B 97, 045303 (2018).

64. (Invited review) “Non-Hermitian photonics based on parity-time symmetry,” L. Feng*, R. El-Ganainy, and Li Ge*, Nature Photonics 11, 752-762 (2017).

63. (Editorial) “Optical microcavities: New understandings and developments,” Li Ge*, L. Feng, and H. G. L. Schwefel,  Photonics Research 5, OM1-OM3 (2017).

62. “Observation of gain spiking and nonlinear beating of optical frequency comb in a Microcavity,” Y. Zheng, T. Qin, J. Yang, X. Chen, Li Ge, and W. Wan, Opt. Express 25, 31140-31147 (2017).  

61. “Constructing the scattering matrix for optical microcavities as a nonlocal boundary value problem,” Li Ge, Photonics Research 5, B20 (2017).

60. “Quasi parity-time symmetric microdisk laser,” N. Zhang, Z. Gu, K. Wang, N. Yi, M. Li, S. Liu, S. Xiao*, Li Ge*, and Q. Song*, Laser Photon. Rev. 11, 1700052 (2017).

59. “Optical fluxes in coupled PT-symmetric photonic structures,” Li Ge*, K. G. Makris, and L. Zhang, Phys. Rev. A 96, 023820 (2017).

58. “Anomalous minimum and scaling behavior of localization length near an isolated flat band,” Li Ge, Ann. Phys. (Berlin) 527, 201600182 (2017). 

57. “Condensation of thresholds in multimode microlasers,” Li Ge*, H. Cao, and A. D. Stone, Phys. Rev. A 95, 023842 (2017).

56. “Symmetry, stability, and computation of degenerate lasing modes,” D. Liu, B. Zhen, Li Ge, F. Hernandez, A. Pick, S. Burkhardt, M. Liertzer, S. Rotter, and S. G. Johnson, Phys. Rev. A 95, 023835 (2017).

55. “Symmetry-protected zero-mode laser with a tunable spatial profile,” Li Ge, Phys. Rev. A 95, 023812 (2017).

54. “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, Li Ge, Q. Gong, Y.-F. Xiao, Phys. Rev. Lett. 118, 033901 (2017).

53. “Contrasting eigenvalue and singular-value spectra for lasing and antilasing in a PT-symmetric periodic structure,” Li Ge* and L. Feng, Phys. Rev. A 95, 013813 (2017).

52. “Controlling mode competition by tailoring the spatial pump distribution in a laser,” A. Cerjan, B. Redding, Li Ge, S. F. Liew, H. Cao, A. D. Stone, Opt. Express 24, 26006 (2016).

51. “Optical reciprocity induced symmetry in photonic heterostructures and its manifestation in scattering PT symmetry breaking,” Li Ge* and L. Feng, Phys. Rev. A 94, 043836 (2016).

50. “Metawaveguide for Asymmetric Interferometric Light-Light Switching,” H. Zhao, W. Fegadolli, J. Yu, Z. Zhang, Li Ge, A. Scherer, and L. Feng, Phys. Rev. Lett. 117, 193901 (2016). [Editor’s Choice]

49. “Non-Hermitian engineering of single mode two dimensional laser arrays,” M. H. Teimourpour, Li Ge, D. N. Christodoulides, and R. El-Ganainy, Sci. Rep. 6, 33253 (2016).

48. “Anomalous parity-time symmetry transition away from an exceptional point,” Li Ge, Phys. Rev. A 94, 013837 (2016).

47. “Nonlinear modal interactions in parity-time (PT) symmetric lasers,” Li Ge* and R. El-Ganainy, Sci. Rep. 6, 24889 (2016).

46. “Bosonic condensation and disorder-induced localization in a flat band,” F. Baboux, Li Ge, T. Jacqmin, M. Biondi, A. Lemaître, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E. Türeci, A. Amo, and J. Bloch, Phys. Rev. Lett. 116, 066402 (2016).

45. “Controlling a microdisk laser by local refractive index perturbation,” S. F. Liew, Li Ge, B. Redding, G. S. Solomon, and H. Cao, Appl. Phys. Lett. 108, 051105 (2016).

44. “Interaction induced mode switching in microlasers,” Li Ge*, D. Liu, S. G. Johnson, S. Rotter, H. E. Tureci, A. Cerjan, H. Cao, A. D. Stone, Optics Express 24, 41 (2016).

43. “Scattering in PT and RT symmetric multimode waveguides: generalized conservation laws and spontaneous symmetry breaking beyond one dimension,” Li Ge*, K. Makris, D. Christodoulides, and L. Feng, Phys. Rev. A 92, 062135 (2015).

42. “Selectively excitation of laser modes by controlling modal interactions,” Li Ge, Optics Express 23, 30049 (2015).

41. “Parity-Time symmetry in a flat band system,” Li Ge, Phys. Rev. A 92, 052103 (2015).

40. “Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping,” N. L. Aung, Li Ge, O. Malik, H. E. Tureci, and C. Gmachl, App. Phys. Lett. 107, 151106 (2015).

39. “Supersymetric laser arrays,” R. El-Ganainy, Li Ge, M. Khajavikhan and D. Christodoulides, Phys. Rev. A 92, 033818 (2015).

38. “Inverse Vernier Effect in lasers,” Li Ge* and H. E. Tureci, Phys. Rev. A 92, 013840 (2015).

37. “Optical resonances in rotating dielectric microcavities of deformed shape,” R. Sarma, Li Ge, and H. Cao, JOSA B 32, 1736-1742 (2015).

36. “Pump-Controlled Modal Interactions in Microdisk Lasers,” S. F. Liew, Li Ge, B. Redding, G. S. Solomon, H. Cao, Phys. Rev. A 91, 043828 (2015).

35. “Rotation-induced Asymmetry of Far-field Emission from Optical Microcavities,” Li Ge*, R. Sarma, and H. Cao, Optica 2, 323-328 (2015).

34. “Rotating optical microcavities with broken chiral symmetry,” R. Sarma, Li Ge, J. Wiersig, and H. Cao, Phys. Rev. Lett. 114, 53903 (2015).

33. “Anomalous transient amplification of waves in non-normal photonic media,” M. K. Makris, Li Ge, and H. E. Tureci, Phys. Rev. X 4, 041044 (2014).

32. “Enhancement of laser power-efficienty by control of spatial hole burning interactions,” Li Ge, O. Malik, and H. E. Tureci, Nature Photonics 8, 871-875 (2014).

31. “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, Li Ge, M. K. Makris, A.D. Stone, J.M. Melenk, S. G. Johnson, and S. Rotter, Phys. Rev. A 90, 023816 (2014).

30. “Parity-time symmetry breaking beyond one dimension: the role of degeneracy,” Li Ge* and A. D. Stone, Phys. Rev. X 4, 031011 (2014).

29. “Rotation-induced Mode Coupling in Open Wavelength-scale Microcavities,” Li Ge*, R. Sarma, and H. Cao, Phys. Rev. A 90, 013809 (2014).

28. “Active control of emission directionality of semiconductor microdisk lasers,” S. F. Liew, B. Redding, Li Ge, G. S. Solomon, and H. Cao, Appl. Phys. Lett. 104, 231108 (2014).

27. “Exceptional points and lasing self-termination in photonic molecules,” R. El-Ganainy*, M. Khajavikhan, and Li Ge*, Phys. Rev. A 90, 013802 (2014).

26. “High-order scattering and multipath interference in wavelength-scale optical cavities,” B. Redding, Li Ge, Q. H. Song, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 112, 163902 (2014).

25. “Breaking of PT-symmetry in bounded and unbounded scattering systems,” P. Ambichl, K. G. Makris, Li Ge, Y. D. Chong, A. D. Stone, and S. Rotter, Phys. Rev. X 3, 041030 (2013).

24. “Antisymmetric PT-photonic structures with balanced positive and negative index materials,” Li Ge* and H. E. Tureci, Phys. Rev. A 88, 053810 (2013).

23. “Controlling multimode coupling by boundary wave scattering,” Li Ge*, Q. H. Song, B. Redding, A. Eberspacher, J. Wiersig, and H. Cao, Phys. Rev. A 88, 043801 (2013).

22. “Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes,” Q. H. Song, Li Ge, J. Wersig, and H. Cao, Phys. Rev. A 88, 023834 (2013).

21. “Gain-tunable optomechanical cooling in a laser cavity,” Li Ge, S. Faez, F. Marquardt, and H. E. Tureci, Phys. Rev. A 87, 053839 (2013).

20. “Extreme output sensitivity to subwavelength boundary deformation in microcavities,” Li Ge*, Q. H. Song, B. Redding, and H. Cao*, Phys. Rev. A 87, 023833 (2013).

19. “Local chirality of optical waves in ultrasmall resonators,” B. Redding, Li Ge, Q. H. Song, J. Wiersig, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 108, 253902 (2012).

18. “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Q. H. Song, Li Ge, B. Redding, C. Zeng, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 108, 243902 (2012).

17. “Pump-induced exceptional points in lasers above threshold,” M. Liertzer, Li Ge, C. Cerjan, A. D. Stone, H. E. Tureci, and S. Rotter, Phys. Rev. Lett. 108, 173901 (2012).

16. “Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures,” Li Ge*, Y. D. Chong, and A. D. Stone, Phys. Rev. A 85, 023802 (2012).

15. “Directional waveguide coupling from a wavelength-scale deformed microdisk laser,” B. Redding, Li Ge, G. S. Solomon, and H. Cao, App. Phys. Lett. 100, 061125 (2012).

14. “Steady-state ab initio laser theory for N-level lasers,” A. Cerjan, Y. D. Chong, Li Ge, and A. D. Stone, Optics Express 20, 474-488 (2012).

13. “Wavelength-scale deformed microdisk lasers,” Q. H. Song, Li Ge, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, A. Eberspancher, W. Fang, G. S. Solomon, and Hui Cao, Phys. Rev. A 84, 063843 (2011).

12. “Unconventional modes in lasers with spatially varying gain and loss,” Li Ge*, Y. D. Chong, S. Rotter, H. E. Tureci, and A. D. Stone, Phys. Rev. A 84, 023820 (2011).

11. “Time-reversed lasing and control of absorption,” W. Wan, Y. D. Chong, Li Ge, H. Noh, A. D. Stone, and H. Cao, Science 331, 889-892 (2011).

10. “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Y. D. Chong*, Li Ge*, and A. D. Stone, Phys. Rev. Lett. 106, 093902 (2011).

9. “Modes of random lasers,” J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, Li Ge, L. Labonte, P. Sebbah, A. D. Stone, H. E. Tureci, and C. Vanneste, Advances in Optics and Photonics 3, 88-127 (2011).

8. “Steady-state ab initio laser theory: generalizations and analytic results,” Li Ge, Y. D. Chong, and A. D. Stone, Phys. Rev. A 82, 063824 (2010).

7. “Directional laser emission from a wavelength-scale chaotic microcavity,” Q. Song, Li Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, Phys. Rev. Lett. 105, 103902 (2010).

6. “Coherent perfect absorbers: time-reversed lasers,” Y. D. Chong, Li Ge, H. Cao, and A. D. Stone, Phys. Rev. Lett. 105, 053901 (2010).

5. “Effects of spatially nonuniform gain on lasing modes in weakly scattering random systems,” J. Andreasen, C. Vanneste, Li Ge, and H. Cao, Phys. Rev. A 81, 043818 (2010).

4. “Ab initio self-consistent laser theory and random lasers,” H. E. Tureci, A. D. Stone, Li Ge, S. Rotter, and R. J. Tandy, Nonlinearity 22 C1-C18 (2009). [Cover Illustration]

3. “Strong interactions in multimode random lasers,” H. E. Tureci, Li Ge, S. Rotter, and A. D. Stone, Science 320, 643-646 (2008).

2. “Quantitative verification of ab initio self-consistent laser theory,” Li Ge, R. J. Tandy, A. D. Stone, and H. E. Tureci, Optics Express 16, 16895-16902 (2008).

1. “Theory of the spatial structure of nonlinear lasing modes,” H. E. Tureci, A. D. Stone, and Li Ge, Phys. Rev. A 76, 013813 (2007). 

Media coverage

On topological polaritonics

1. “Versatile perovskites enable room-temperature topological polaritonics,” Nature Nanotechnology, News and Views (June 10, 2024).

On the selection of Optical Fellow

1. Optica Announces 2024 Fellows Class | Optica

On non-Hermitian gauged laser array

1. “Non-Hermitian gauged laser array,” Nature Photonics, News and Views (August 31, 2023).

On chip-scale spin-orbit lasers

1. “Microlaser chip adds new dimensions to quantum communication,” Phys.org (November 21, 2022). Also appeared on Science Daily, Duke University Engineering News, Penn Engineering Today, India Educational Diary, Eurekalert, HPC Wire, YouTube, Newsbreak, Flipboard, etc. 

2. “Article co-authored by CSI physics professor Li Ge published in ‘Nature’,” CSI Today (November 28, 2022). 

3. “Theoretical physicist Li Ge uses microlaser to expand dimensions of qubits,” CUNY Graduate Center (January 19,2022).

On the list of the top 2% scientists by a Stanford study

1. “Ten CSI Faculty Members Named to Stanford University’s Top Two Percent Scientists List,” CSI Today (September 28, 2021).

On ultrafast vortex lasers

1. “Ultrafast vortex microlasers,” Ian S. Osborne, Research in Science Journals, Science 367, 996 (2020) 

2. “Innovative switching mechanism improves ultrafast control of microlasers,” Phys.org (February 2020)

On the NSF CAREER award 

1. CUNY Graduate Center “Spotlight on Faculty” (February, 2019) 

2. OSPR Digest, February Issue, College of Staten Island (February, 2019) 

3. “Five CUNY Professors Receive NSF Career Awards, One Of Nation’s Most Highly Sought Research Honors,” CUNY Communications (April, 2019) 

4. “CSI is here for you,” President William J. Fritz, SIlive.com (May 13, 2020)

On “Non-Hermitian photonics based on parity–time symmetry” (Ref. 64 above)

1. “Turning loss into gain,” Nature Photonics 11, 741 (2017).

On Rotation-Time and Inversion-Time symmetries

1. 2016 annual report of the Research Foundation at CUNY

On the effect of rotation on far-field emission in microdisk cavities (Ref. 35 above)

1. “Li Ge’s Research on World’s Smallest Gyroscope Appears in Optica”

CUNY Newswire

2. “Light-powered gyroscope is world’s smallest: Promises a powerful spin on navigation”

Eurek Alert by AAAS, Optical Society of America, Phys.org, Science Daily, Business Wire

3. “Light-powered gyroscope will be world’s smallest”

The Economic Times, Business Standard

4. “Light-powered gyroscope has sub-millimeter dimensions”

Laser Focus World

On the coherent perfect absorber (aka “anti-laser”; Refs. 6 and 11 above)

1. “Laser science: Suckers for light”

Nature

2. “Behold, the antilaser”

Science News

3. “Backward lasing yields a perfect absorber”

Physics by American Physics Society

4. “Scientists build the world’s first anti-laser”

BBC News

5. “A Dazzling Show Inside a Laser, but a Vacuum of Light Outside”

New York Times

On power enhancement of microlasers (Ref. 32 above)

1. “Enabling the right modes for certain lasers could increase efficiency 100 to 10,000-fold”

Laser Focus World

2. “Turning loss to gain: Cutting power could dramatically boost laser output”

Phys.org

3. “Reducing Power Input in Lasers may Increase its Output”

China Topix

4. “Turning loss to gain: cutting power could boost laser output”

Princeton Engineering News

On laser self-termination with more input energy (Refs. 17 an 27 above)

1. “Strange physics turns off laser”

Princeton Journal Watch, NSF News, Science Daily

2. “More is less: increased voltage switches off microlasers”

Photonics.com

3. “Paradoxical laser system shuts off with energy boost”

Interference Technology

On Steady-state Ab-initio Laser Theory (SALT; Ref. 3 above) 

1. “A Unified Picture of Laser Physics”

Science

2. “Unified Laser Theory”

Science Roundup by AAAS

3. “LASER THEORY: Ten-year-old embarrassment leads to unified laser theory”

Laser Focus World

Selected Talks and Conference Proceedings

“Non-Hermitian meta-materials with quantum-inspired symmetries and exceptional points,” MSE seminar at RPI, Troy, NY (October 2024).

(Invited) “Novel resonances and exceptional points in non-Hermitian optical systems,” Simons Workshop on non-Hermitian topology, geometry and symmetry across physical platforms, Stony Brook, NY (September 2024).

(Invited) “Non-Hermitian Systems with a Real Spectrum and Selective Skin Effect,” META’24, Toyama, Japan (July 2024).

(Invited) “Robust photonic zero modes in non-Hermitian systems without a global symmetry,” PIERS’24, Chengdu, China (April 2024).

(Plenary) “Novel Resonances and Exceptional Points in non-Hermitian Optical Systems,” 63rd Sanibel Symposium, St. Augustine Beach, FL (February 2024).

“Novel Resonances and Exceptional Points in non-Hermitian Optical Systems,” Solid-State and Optics Seminar at Yale University, New Haven (November 2023).

(Invited) “Novel Resonances and Exceptional Points in non-Hermitian Optical Systems,” physics seminar at University of Crete, Heraklion, Greece (September 2023). 

(Invited) “Novel Resonances and Exceptional Points in non-Hermitian Optical Systems,” IEEE RAPID, Miramar Beach, FL (September 2023). 

(Invited) “Novel Resonances and Exceptional Points in non-Hermitian Optical Systems,” CLEO, San Jose, CA (May 2023).

(Invited) “First-principle control of novel resonances in non-Hermitian photonic media,” 16th international conference Analytic and algebraic methods in physics, Prague, Czech Republic (September, 2022).

(Invited) “Exploring non-Hermitian symmetries and topology using synthetic photonic materials,” Remote Colloquium at the University of Texas Rio Grande Valley (September, 2020). 

(Invited) “Pseudochirality and its applications in non-Hermitian photonics,” Virtual Seminars on Pseudo-Hermitian Hamiltonians in Quantum Physics, City University of London (August, 2020)

(Invited) “Parity-time symmetry breaking in a synthetic dimension,” FoNLO’19, Dayton, Ohio (August, 2019) 

(Invited) “Chiral symmetry in non-Hermitian systems,” META’19, Lisbon, Portugal (July, 2019) 

(Invited) “Non-Hermitian Photonics based on Quantum-Inspired Symmetries,” Workshop on Mesoscopic Quautm Physics and beyond, Yale Quantum Institute, New Haven (June, 2019)

(Invited) “Non-Hermitian Photonics based on quantum-inspired symmetries,” Annual meeting of Korean Physical Society, Daejeon, Korea (April, 2019) 

“Non-Hermitian Photonics based on quantum-inspired symmetries,” Seminar at the Center for Theoretical Physics of Complex Systems, Daejeon, Korea (April, 2019) 

(Invited) “Non-Hermitian chiral symmetry,” Non-Hermitian Physics – PHHQP XIX, Tsinghua International Mathematics Forum, Sanya, China (March, 2019) 

(Invited) “Exploring non-Hermitian symmetries and topology using synthetic photonic materials,” Condensed Matter Seminar, Case Western Reserve University, Cleveland, Ohio (February, 2019)

(Invited) “Non-Hermitian photonics based on quantum-inspired symmetries,” Physics Colloquium, Washington State University, Pullman, Washington (February, 2019)

(Invited) “Non-Hermitian photonics with novel symmetries,” Physics seminar, Hunter College, CUNY, New York (October, 2018) 

(Invited) “Complex mirror symmetry and its realization in photonics,” 15th international conference Analytic and algebraic methods in physics, Prague, Czech Republic (September, 2018).

(Invited) “Non-Hermitian symmetries and photonic zero modes,” Max-Planck Workshop on Synthetic Non-Hermitian Photonic Structures, Dresden, Germany (August, 2018). 

(Invited) “Non-Hermitian particle-hole symmetry, flat band, and linear localization,” Nonlinear Localization in Lattices, Anargyreios and Korgialeneios School of Spetses, Greece (June, 2018).  

(Invited) “Non-Hermitian particle-hole symmetry, flat band, and linear localization,” Non-Hermitian Physics – PHHQP XVIII, International Center for Theoretical Sciences, Bangalore, India (June, 2018). 

(Invited) “Scattering matrix of optical microcavities and its conservation relations with bosonic antilinear symmetries,” 2nd International Workshop on Asymmetric Microcavity and Wave Chaos, Fuzhou, China (May, 2018). 

(Invited) “Novel non-Hermitian photonics based on quantum-inspired symmetries,” Zhige Forum for the next generation of Physicists, Peking University, China (May, 2018).

(Invited) “Novel non-Hermitian photonics inspired by quantum symmetries,” Sichuan University, China (December, 2017).

(Invited) “Non-Hermtiian particle-hole symmetry and its implications,” 642nd WE-Heraeus Seminar “Non-Hermitian Hamiltonians in Physics: Theory and Experiment,” Bad Honnef, Germany (May, 2017).

(Invited) “Novel non-Hermitian photonics inspired by quantum symmetries”, Physics seminar, NYU Shanghai, Shanghai, China (March, 2017).

(Invited) “Optical reciprocity induced symmetry in photonic heterostructures and its manifestation in scattering PT symmetry breaking”, Workshop on asymmetry microcavity and wave chaos, Beijing, China (March, 2017).

“Symmetry-protected zero-mode laser with a tunable spatial profile”, APS March Meeting, New Orleans, LA (March, 2017).

(Invited) “Modal competition and other nonlinear phenomena in PT-symmetric photonics”, Mathematics Colloquium, University of Vermont, Burlington, VT (2016).

(Invited) “Novel Modal Behaviors in Microcavity Lasers”, Peking University, Beijing, China (2016).

(Invited) “Pattern Formation and Strong Nonlinear Interactions in Exciton-Polariton Condensates”, Nanjing University, Nanjing, China (2016).

(Invited) “Interaction-induced mode switching and threshold condensation in steady-state microlasers”, PIERS’16, Shanghai, China (2016).

(Invited) “Anomalous Parity-Time Symmetry Transition away from an Exceptional Point”, PIERS’16, Shanghai, China (2016).

(Invited) “Scattering in PT and RT Symmetric Multimode Waveguides: Generalized Conservation Laws beyond 1D”, META’16, Malaga, Spain (2016).

(Invited) “Quantum Effects in Parity-Time Symmetry breaking”, International Workshop on Non-Hermitian Photonics in Complex Media, Crete, Greece (2016).

“Energy Dependence and Scaling Property of Localization Length near a Gapped Flat Band”, APS March Meeting, Baltimore, MD (2016).

(Invited) “Pattern Formation and Strong Nonlinear Interactions in Exciton-Polariton Condensates”, New York City College of Technology, New York (2015).

(Invited) “Rotation-induced evolution of far-field emission patterns of microdisk cavities”, 28th Annual Conference of the IEEE Photonics Society, Reston, VA (2015).

(Invited) “Spontaneous Symmetry Breaking of Scattering Eigenstates in Parity-Time Symmetric Multimode Waveguides”, META’15, New York, NY (2015).

(Invited) “Parity-Time Symmetry Breaking beyond One Dimension: the Role of Degeneracy”, META’15, New York, NY (2015).

“Supersymmetry laser arrays”, CLEO, San Jose, CA (2015).

(Invited) “Selective excitation by active transformation optics in media with strong modal interaction”, 9th IMACS International Conferences on Nonlinear Evolutions and Wave Phenomena, Athens, GA (2015).

“Controlling modal interactions in lasers for frequency selection and power enhancement”, APS March Meeting, San Antonio, TX (2015).

“Lasing mode selection by active transformation optics”, Photonic West, San Francisco, CA (2015).

“Rotation-induced Asymmetry of Far-field Emission from Optical Microcavities”, Frontier in Optics, Tuscan, AZ (2014).

“Pattern Formation and Strong Nonlinear Interactions in Exciton-Polariton Condensates”, APS March Meeting, Denver, CO (2014). 

(Invited) “Output power enhancement in microlasers by selective pumping”, Photonic West, San Francisco, CA (2014).

(Invited) “Antisymmetric PT-photonic structures with balanced positive and negative index materials”, Israel Science Foundation workshop on light-matter interaction, Israel (2013).

“Gain-enhanced optical cooling in cavity optomechanics”, APS March Meeting, Baltimore, MD (2013).

(Invited) “Pump-induced exceptional points in lasers above threshold”, 8th IMACS International Conferences on Nonlinear Evolutions and Wave Phenomena, Athens, GA (2013).

“Quantum theory of optomechanical interaction in the presence of an active medium”, Optomechanics on the Hudson, NY (2012).

(Invited) “Lasing in PT-symmetric cavities”, 7th IMACS International Conferences on Nonlinear Evolutions and Wave Phenomena, Athens, GA (2011).

“Coherent perfect absorption and anomalous scattering in balanced gain/loss structures”, Y. D. Chong, Li Ge, & A. D. Stone, Frontier in Optics, Rochester, New York (2010).

“Coherent perfect absorbers: time-reversed lasers”, Y. D. Chong, Li Ge, H. Cao, & A. D. Stone, Quantum Electronics and Laser Science Conference, San Jose, California (2010).

“Lasing in chaotic and random scattering media”, H. E. Türeci, Li Ge, A. D. Stone, R. J. Tandy, & S. Rotter, Conference on Quantum electronics and Laser Science Conference, CLEO/QELS, Baltimore, Maryland (2009).

“Ab initio semiclassical multimode lasing theory of chaotic cavity lasers”, Li Ge, H. E. Türeci, S. Rotter, & A. D. Stone, Frontiers in Optics, Rochester, New York (2008).

“Theory of diffusive random lasers”, A. D. Stone, H. E. Türeci, Li Ge, & S. Rotter, Frontiers in Optics, Rochester, New York (2008).

“Comparison of ab initio Laser theory with exact simulation”, R. J. Tandy, Li Ge, & A. D. Stone, Frontiers in Optics, Rochester, New York (2008).

(invited) “First principles prediction and control of lasing in microcavities”, Li Ge, H. E. Türeci, S. Rotter, & A. D. Stone, SPIE Photonics West, San Jose, California (2008).

(invited) “Theory of the spatial structure of non-linear modes in novel and complex laser cavities”, A. D. Stone, H. E. Türeci, Li Ge, & S. Rotter, 9th International Conference on Transparent Optical Networks, Rome, Italy(2007).

“Theory of the spatial structure of non-linear modes in conventional and random lasers”, H. E. Türeci, A. D. Stone, Li Ge, & S. Rotter, Photonic Metamaterials: From Random to Periodic (META), Jackson Hole, USA (2007).