Prof. Manas Kulkarni

Assistant Professor of Physics at City University of New York – CityTech

My research interests include, Condensed Matter Theory, Cold Atomic Gases, Non-equilibrium Physics with light and matter, Mesoscopic Quantum Optics, Hybrid circuit-QED systems, Integrable Models, Mathematical Physics, Nonlinear Hydrodynamics

Positions

Assistant Professor at City University of New York, Physics, New York City College of Technology

Academic Interests

My research interests can be broadly classified as follows :

(1) Light-matter interactions, Mesoscopic Quantum Optics

(i) Optically driven quantum gases coupled to cavities
(ii) Hybrid circuit-QED systems
(iii) Quantum dots coupled to microwave cavities (photonic, phononic and electronic properties)
(iv) Hamiltonian and Bath Engineering

(2) Cold Atomic gases

(i) Nonlinear Hydrodynamics, Shock Waves, Solitons, Quenches
(ii) Dynamical Critical Phenomenon, Universalities

(3) Mesoscopic Systems

(i) Transport and Correlations in Quantum Dots, Impurities, Molecular conducting junctions
(ii) Strongly Correlated Systems
(iii) Devices (Diodes/Rectifiers, Transistors, Thermoelectric effects)

(4) Non-equilibrium physics

(i) Equilibration and Thermalization in Quantum Systems, Quenches
(ii) Open Quantum Systems
(iii) Preparation of non-trivial non-equilibrium steady states (for e.g., entangled many body states).

(5) Integrable systems, field theory and mathematical physics

(i) Field theory of integrable models
(ii) Solitons
(iii) Stochastic and Deterministic PDE’s (KPZ, NLS, KdV, Burgers, Riemann-Hopf equations).

Grants/Awards

Professional Staff Congress – City University of New York (PSC-CUNY) Research Grant (2016-2017)

William Stewart Award (2016)


Professional Staff Congress – City University of New York (PSC-CUNY) Research Grant (2015-2016)

publications

27. B. K. Agarwalla, M. Kulkarni, S. Mukamel, D. Segal, arXiv:1606.01922 (2016), “Giant photon gain in large-scale quantum dot circuit-QED systems”

26. B. K. Agarwalla, M. Kulkarni, S. Mukamel, D. Segal, arXiv:1604.01811 (2016), “Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic NEGF approach”

25. F. Franchini, M. Kulkarni, A. Trombettoni, arXiv:1603.03051 (2016), “Hydrodynamics of local excitations after an interaction quench in 1D cold atomic gases”

24. C. Aron, M.Kulkarni and H. E. Tureci , Phys. Rev. X 6, 011032 (2016), “Photon-mediated interactions: a scalable tool to create and sustain entangled many-body states”

23. A. Purkayastha, A. Dhar, M. Kulkarni, Physical Review A (accepted, in press) arXiv:1511.03778 (2015), “Exact Redfield description for open non-interacting quantum systems and failure of the Lindblad approach”

22. M. E. Schwartz, L. Martin, E. Flurin, C. Aron, M. Kulkarni, H. E. Tureci, I. Siddiqi, Phys. Rev. Lett (2016, accepted), arXiv:1511.00702 (2015), “Stabilizing entanglement via symmetry-selective bath engineering in superconducting qubits”

21. JH. Jiang, M. Kulkarni, D. Segal, Y. Imry, Phys. Rev. B 92, 045309 (2015), “Phonon-thermoelectric transistors and rectifiers”

20. R. Hartle, M. Kulkarni, Phys. Rev. B 91, 245429 (2015), “Effect of broadening in the weak coupling limit of vibrationally coupled electron transport through molecular junctions and the analogy to quantum dot circuit QED systems”

19. M. Kulkarni, D. A. Huse, H. Spohn, Phys. Rev. A 92, 043612 (2015), “Fluctuating hydrodynamics for a discrete Gross-Pitaevskii equation: mapping to Kardar-Parisi-Zhang universality class”

18. F. Franchini, A. Gromov, M. Kulkarni, A. Trombettoni, J. Phys. A: Math. Theor. 48 (2015) 28FT01 (Fast Track Communication) “Universal dynamics of a soliton after an interaction quench”

17. C. Aron, M.Kulkarni and H. E. Tureci , Phys. Rev. A 90, 062305 (2014) “Steady-state entanglement of spatially separated qubits via quantum bath engineering”

16. M.Kulkarni, O. Cotlet and H. E. Tureci, Phys. Rev. B, 90, 125402 (2014) “Cavity-coupled double-quantum dot at finite bias: analogy with lasers and beyond”

15. M.Kulkarni, B. Oztop and H. E. Tureci, Phys. Rev. Lett, 111, 220408 (2013) “Cavity-mediated near-critical dissipative dynamics of a driven condensate”

14. M. Kulkarni, K. L. Tiwari and D. Segal, New Journal of Physics, 15, 013014 (2013)”Full density matrix dynamics for large quantum systems: interactions, decoherence and inelastic effects”

13. M. Kulkarni and A. Lamacraft, Phys. Rev. A 88, 021603, Rapid Communications (2013) “Finite-temperature dynamical structure factor of the one-dimensional Bose gas: From the Gross-Pitaevskii equation to the Kardar-Parisi-Zhang universality class of dynamical critical phenomena”

12. M. Kulkarni, K. L. Tiwari and D. Segal, Phys. Rev. B 86, 155424 (2012) “Towards equilibration and thermalization between finite quantum systems: Unitary emulation of dephasing effects and inelastic interactions”

11. M. Kulkarni and A. G. Abanov, Phys. Rev. A, 86, 033614 (2012) “Hydrodynamics of cold atomic gases in the limit of weak nonlinearity, dispersion, and dissipation”

10. M. Kulkarni and R. M. Konik, arXiv:1109.5731 (2011), “The Fermi liquid nature of the ground state of double quantum dots in parallel from a 1/N expansion”

9. A. G. Abanov, A. Gromov, M. Kulkarni, J. Phys. A: Math. Theor. 44 ,295203 (2011) “Soliton solutions of Calogero model in harmonic potential”

8. S. Ganeshan, M. Kulkarni and A. C. Durst, Phys. Rev. B 84, 064503 (2011) “Quasiparticle scattering from vortices in d-wave superconductors. II. Berry phase contribution”

7. J. Joseph, J. E. Thomas, M. Kulkarni, A. G. Abanov, Phys. Rev. Lett. 106, 150401 (2011) “Observation of shock waves in a strongly interacting Fermi gas”

6. M. Kulkarni and A. G. Abanov, Nucl. Phys. B, 846, 122 (2011) “Cold Fermi gas with inverse square interaction in a harmonic trap”

5. M. Kulkarni and R. M. Konik, Phys. Rev. B 83, 245121 (2011) “The RKKY Interaction and the Nature of the Ground State of Double Quantum Dots in Parallel”

4. M. Kulkarni, S. Ganeshan and A. C. Durst, Phys. Rev. B 84, 064502 (2011) “Quasiparticle scattering from vortices in d-wave superconductors I: Superflow contribution”

3. F. Franchini and M. Kulkarni, Nucl. Phys. B, 825, 320 (2010) “Emptiness and Depletion Formation Probability in spin models with inverse square interaction”

2. M. Kulkarni. F. Franchini and A. G. Abanov, Phys. Rev. B 80, 165105 (2009) “Nonlinear dynamics of spin and charge in spin-Calogero model”

1. M. Kulkarni, N. Seshadri, V. S. C. Manga Rao, S. Dutta Gupta, Journal of Modern Optics, 10, Volume 51 No. 4, 549-557 “Control of superluminal transit through a heterogeneous medium”

education

Post-Doctoral Research Associate, School of Engineering and Applied Science, Department of Electrical Engineering, Princeton University, NJ, USA, 2012-2014

Post-Doctoral Fellow, Department of Physics, Chemical Physics Theory Group, Department of Chemistry, University of Toronto, CANADA, 2011-2012

Ph.D in Physics: State University of New York at Stony Brook, USA (co-advisor at Brookhaven National Laboratory, USA) , 2011

Masters in Physics: State University of New York at Stony Brook, USA, 2007

Bachelors Honors in Physics: St. Stephens College, University of Delhi, India, 2005